4AI.1.4 OMAP4 Icecream Sandwich Panda Notes

From OMAPpedia

(Difference between revisions)
Jump to: navigation, search
(Flashing the OMAP4 Hardware)
(Building Android Filesystem (AFS) with TI Codecs enabled)
Line 210: Line 210:
cd $MYDROID
cd $MYDROID
source build/envsetup.sh
source build/envsetup.sh
-
</pre>
 
-
 
-
Now depending on your platform use either:
 
-
<pre>
 
lunch full_panda-eng
lunch full_panda-eng
-
</pre>
 
-
 
-
<pre>
 
make clean ;#(required for rebuild only)
make clean ;#(required for rebuild only)
make -j4 2>&1 |tee $MYDROID/logs/android_make.out
make -j4 2>&1 |tee $MYDROID/logs/android_make.out

Revision as of 16:52, 15 June 2012

These Notes are an effort from the community to port the 4AI.1.4 Release from Texas Instruments to the Panda and Panda ES platforms without any warranty of any kind
Texas Instruments is not responsable for supporting these notes, it is up to the community.
Feel free to use this instructions under your own risk being aware that if you face any issue you have to fix it by yourself

Contents

Introduction

This software has been tested in the following software and hardware environment:

OS Kernel: Linux® 3.0
Android: Android IcecreamSandwich 4.0.4(MR1.1)
Toolchain: CodeSourcery compiler version Sourcery G++ Lite 2010q1-202 for ARM GNU/Linux
Reference hardware platforms: TI OMAP4 4430/60 Pandaboard and Pandaboard ES
Build Host OS: Ubuntu

Tools & Dependency packages

Pre-requisite packages for building the Android Filesystem (Note: This is with reference to Ubuntu 12.04 64-bit). Ubuntu 64-bit is required for the cross-compilation of Android Ice Cream Sandwich Filesystem.

If you are behind a firewall, you will have to set-up firewall using the instructions in [1].

The following commands will install the correct packages to your server:

sudo apt-get install git-core flex bison gperf libesd0-dev zip libwxgtk2.6-dev zlib1g-dev build-essential tofrodos
sudo apt-get install lib32readline5-dev libstdc++6 lib32z1 lib32z1-dev ia32-libs g++-multilib libx11-dev lib32ncurses5-dev

The following commands will install the host compilers needed in your server:

sudo apt-get install gcc-4.4 gcc-4.4-multilib g++-4.4 g++-4.4-multilib
cd /usr/bin
sudo ln -sf gcc-4.4 gcc
sudo ln -sf g++-4.4 g++

Add the partner repositories and install the JDK:

sudo add-apt-repository "deb http://archive.canonical.com/ lucid partner"
sudo apt-get update
sudo apt-get install sun-java6-jdk

Install repo tool:

mkdir ~/bin -p
sudo apt-get install curl
curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo
chmod a+x ~/bin/repo
export PATH=~/bin:$PATH

If you do not have sudo rights to your machine, contact your System Administrator for assistance.


Tool Chain for building Kernel and Drivers

The Kernel and Driver sources are built using Sourcery G++ Lite 2010q1-202 for ARM GNU/Linux version (This particular version is needed for the AFS to work properly).

This tool chain can be obtained from [2].

Downloading Release Software

To obtain Android Filesystem Sources follow:

cd <your work directory>
mkdir -p 4AI.1.4; cd 4AI.1.4
export YOUR_PATH=`pwd`
mkdir -p mydroid; cd mydroid
export MYDROID=`pwd`
repo init -u git://git.omapzoom.org/platform/omapmanifest.git -b 27.x -m RLS4AI.1.4_IcecreamSandwich.xml
repo sync


To obtain Kernel & Driver Sources follow:

To clone kernel source from scratch do:

cd ${YOUR_PATH}
git clone git://git.omapzoom.org/kernel/omap.git kernel/android-3.0
cd kernel/android-3.0
git checkout d5e6ee8b7b648094892e501b4ee6e2424d59f7d1


To obtain U-Boot Sources follow:

cd ${YOUR_PATH}
git clone git://git.omapzoom.org/repo/u-boot.git u-boot
cd u-boot
git checkout b2f9ce5c0c2747f1af86d26f9cadbc36af9b7da6


To obtain X-loader Sources follow:

cd ${YOUR_PATH}
git clone git://git.omapzoom.org/repo/x-loader.git x-loader
cd x-loader
git checkout 835089cdb52288fcf1ca2f14018ae756842be724

Release Content

This release has the below content: - A9 source code for accelerating Video

Patching for Pandaboard Support

Setting up environment

From your work directory (where your 4AI.1.4 folder resides):

export YOUR_PATH=`pwd`
export MYDROID=${YOUR_PATH}/mydroid

Patching X-LOADER

Download and apply xloaderpanda.patch

cd ${YOUR_PATH}/x-loader
git am xloaderpanda.patch

Patching U-BOOT

Download and apply ubootpanda.patch

cd ${YOUR_PATH}/u-boot
git am ubootpanda.patch

Patching KERNEL

Download and apply kernelpanda1.patch Download and apply kernelpanda2.patch Download and apply kernelpanda3.patch

cd ${YOUR_PATH}/kernel/android-3.0
git am kernelpanda1.patch
git am kernelpanda2.patch
git am kernelpanda3.patch

Build Instructions

Setting up build environment

From your work directory (where your 4AI.1.4 folder resides):

export YOUR_PATH=`pwd`
export PATH=$PATH:<toolchain_parent_dir>/arm-2010q1/bin
export MYDROID=${YOUR_PATH}/mydroid
mkdir $MYDROID/logs
export CROSS_COMPILE=arm-none-linux-gnueabi-
export PATH=${YOUR_PATH}/u-boot/tools:$PATH

Building X-LOADER

cd ${YOUR_PATH}/x-loader
make distclean	
make ARCH=arm omap44XXpanda_config
make ift 2>&1 |tee $MYDROID/logs/x-loader_make.out

Building U-BOOT

cd ${YOUR_PATH}/u-boot
make distclean
make ARCH=arm omap44XXpanda_config
make 2>&1 |tee $MYDROID/logs/u-boot_make.out

Building Kernel

Note: If you are building for a GP device it is recommended not to build the SMC kernel driver.
To create kernel uImage you need to add "mkimage" directory path to your "PATH" environment variable:

cd ${YOUR_PATH}/kernel/android-3.0
make ARCH=arm distclean
make ARCH=arm panda_defconfig
make ARCH=arm uImage 2>&1 |tee $MYDROID/logs/kernel_make.out

Building Kernel modules

cd ${YOUR_PATH}/kernel/android-3.0
make ARCH=arm modules 2>&1 |tee $MYDROID/logs/kernel_modules.out

Building WLAN driver

cd $MYDROID/hardware/ti/wlan/mac80211/compat
export KERNEL_DIR=${YOUR_PATH}/kernel/android-3.0
export KLIB=${KERNEL_DIR}
export KLIB_BUILD=${KERNEL_DIR}
make ARCH=arm

The above step will produce the following kernel WLAN modules: compat.ko, cfg80211.ko, mac80211.ko, wl12xx.ko and wl12xx_sdio.ko. These modules are pushed into the /system/lib/modules directory on the flashed image.

Building Android Filesystem (AFS) with TI Codecs enabled

In the make step below use the number of cores you have available; i.e. -j4 (for 4 cores) or -j12 (for 12 cores)

cd $MYDROID
source build/envsetup.sh
lunch full_panda-eng
make clean ;#(required for rebuild only)
make -j4 2>&1 |tee $MYDROID/logs/android_make.out

Building AFS with Android Codecs

This release was not verified with Android codecs.

Preparing Android binaries

The following binaries are required by the Panda board. This step will prepare a directory, called myfs, containing all necessary Android files that you must include within your SD card.


export BOARD_TYPE="panda"

cd $MYDROID/out/target/product/$BOARD_TYPE
mkdir -p system/lib/modules
cp $MYDROID/hardware/ti/wlan/mac80211/compat/compat/compat.ko system/lib/modules/
cp $MYDROID/hardware/ti/wlan/mac80211/compat/net/wireless/cfg80211.ko system/lib/modules/
cp $MYDROID/hardware/ti/wlan/mac80211/compat/net/mac80211/mac80211.ko system/lib/modules/
cp $MYDROID/hardware/ti/wlan/mac80211/compat/drivers/net/wireless/wl12xx/wl12xx.ko system/lib/modules/
cp $MYDROID/hardware/ti/wlan/mac80211/compat/drivers/net/wireless/wl12xx/wl12xx_sdio.ko system/lib/modules/


cd $YOUR_PATH
mkdir myfs_$BOARD_TYPE
cd myfs_$BOARD_TYPE
cp -Rfp $MYDROID/out/target/product/$BOARD_TYPE/root/* .
cp -Rfp $MYDROID/out/target/product/$BOARD_TYPE/system/ .
cp -Rfp $MYDROID/out/target/product/$BOARD_TYPE/data/ .

Updating Ducati

For hardware accelerated video playback and camera usage you have to use proper Ducati binary.

Preparing SD images

cd $YOUR_PATH
mkdir omap4_emmc_files_$BOARD_TYPE
cd omap4_emmc_files_$BOARD_TYPE
cp -f $MYDROID/out/host/linux-x86/bin/fastboot .
cp -f $MYDROID/out/host/linux-x86/bin/mkbootimg .
cp -f $MYDROID/out/host/linux-x86/bin/simg2img .
cp -f $MYDROID/out/host/linux-x86/bin/make_ext4fs .

cp -f ${YOUR_PATH}/x-loader/MLO .
cp -f ${YOUR_PATH}/u-boot/u-boot.bin .
cp -f ${YOUR_PATH}/kernel/android-3.0/arch/arm/boot/zImage .


Creating img files:

cd ${MYDROID}
find out/target/product/$BOARD_TYPE -name *.img -exec rm -f {} \;  
make
cp -f ${MYDROID}/out/target/product/$BOARD_TYPE/*.img $YOUR_PATH/omap4_emmc_files_$BOARD_TYPE

This build should not take too much time and will re-generate a new *.img files.

Now from this new directory we will create the eMMC images which will be flashed using fastboot protocol (described later). First create boot.img image using kernel image we copied previously:

cd $YOUR_PATH/omap4_emmc_files_$BOARD_TYPE
$MYDROID/device/ti/support-tools/boot/omap4/umulti2.sh 

Now create cache partition:

cd $YOUR_PATH/omap4_emmc_files_$BOARD_TYPE
dd if=/dev/zero of=./cache.img bs=1048510 count=128
mkfs.ext4 -F cache.img -L cache

Flashing the OMAP4 Hardware

After the emmc files are available you then can use the fastboot to upload binaries to your Panda or Panda ES.

Connect the Panda or Panda ES mini USB port to your Linux machine and go to where the eMMC files are. Previous partitions created will be deleted and eMMC will be flashed with new u-boot and MLO. You need to boot the board and start fastboot server on the target (OMAP4 board).

# fastboot

You should see a message such as:

"Fastboot started..." or "Fastboot entered..."

When running the fastboot the command should be issued as super user then run:

sudo ./fastboot flash xloader MLO
sudo ./fastboot flash bootloader u-boot.bin
sudo ./fastboot flash boot boot.img
sudo ./fastboot flash system system.img
sudo ./fastboot flash cache cache.img
sudo ./fastboot flash userdata userdata.img
sudo ./fastboot reboot

Pandaboard will boot up on its own with the new image in a few minutes. Until the user interface is ready for use, please avoid interrupting it by pressing any keys etc. This will detect your board and flash the images to the board.


First time flashing on SD

If there is no u-boot on your board's, you will have to boot using SD card. Copy u-boot.bin and MLO files to an SD card (boot partition) and then boot the target board from this external SD card. Once you boot the board, start fastboot server on the target (OMAP4 board).

# fastboot

You should see a message such as:

"Fastboot started..." or "Fastboot entered..."

Now from the PC execute following commands to flash MLO and u-boot to eMMC

sudo ./fastboot oem format
sudo ./fastboot flash xloader ./MLO
sudo ./fastboot flash bootloader ./u-boot.bin
sudo ./fastboot reboot

This will create several partitions on your SD card that has specific proposes for the Pandaboard

For Formatting the SD Card:

See Android Build SD Configuration page

Resources

WLAN Calibration

For optimal Wi-Fi performance calibration of Wi-Fi hardware is mandatory, follow the procedure from http://omappedia.org/wiki/Android_Mac80211#WLAN_Calibration_Instruction

WLAN Firmware files

Wi-Fi firmware files are now part of repo.

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox